Search BIREA:

View:   long pages · print version

Annotated bibliography

A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z · all

References

Waage J.K. (2001). Indirect ecological effects of biological control: the challenge and the opportunity. Pp. 1-12 In: Evaluating indirect ecological effects of biological control, E. Wajnberg, J.K. Scott and P.C. Quimby (Ed.) CABI Publishing, Wallingford, Oxon., UK.

Waipara N.W., Barton J., Smith L.A., Harman H.M., Winks C.J., Massey B., Wilkie J.P., Gianotti A.F. and Cripps, M.G. (2009). Safety in New Zealand weed biocontrol: a nationwide pathogen survey for impacts on non-target plants. New Zealand Plant Protection 62: 41-49.
Nationwide disease surveys conducted between 2000-2009 focused on species closely related to target weeds most at risk of attack. Disease damage attributable to biocontrol agents was observed on two non-target plants. Pustules of the blackberry rust, Phragmidium violaceum, were found on the endemic Rubus species, R. cissoides (bush lawyer, tataramoa) at one location as predicted from pre-release host range tests. No non-target damage was observed in the remaining case studies.

Wang Y., Ding J. and Guoan Z. (2008). Gallerucida bifasciata (Coleoptera : Chrysomelidae), a potential biological control agent for Japanese knotweed (Fallopia japonica). Biocontrol Science & Technology 18: 59-74
Japanese knotweed, Fallopia japonica (Houttuyn) Ronse Decraene (Polygonaceae) is an invasive weed in the United States and Europe. A leaf beetle, Gallerucida bifasciata (Coleoptera: Chrysomelidae) is an important natural enemy attacking this plant in Asia. However, its host range records were ambiguous. This study examined the beetle's host specificity through a set of choice and no-choice tests in the laboratory and field in its native China. Gallerucida bifasciata larvae were able to complete development on seven of 87 plant species in larval development tests, while adults fed and oviposited on 10 plants in no-choice tests. Multiple choice tests showed adults strongly preferred F. japonica, Persicaria perfoliata (L.) H. Gross and Polygonum multiflorum Thunb over all other plants. Open field tests and field surveys further revealed that these three species were in its ecological host range. The results of this study suggest that G. bifasciata is a potential promising agent for control of Japanese knotweed in the United States and Europe, although additional host specificity tests and risk assessment is required.

Wapshere A.J. (1974). A strategy for evaluating the safety of organisms for biological weed control. Annals of Applied Biology 77: 201-211.

Wapshere A.J. (1989). A testing sequence for reducing rejection of potential biological control agents for weeds. Annals of Applied Biology 114: 515-526.

Watson M.C. (2007). Buddleia weevil blooms. What's New in Biological Control of Weeds 41: 11.

Watson M.C., Withers T.M. and Hill R.L. (2009). Two-phase open-field test to confirm host range of a biocontrol agent Cleopus japonicus. New Zealand Plant Protection 62: 184-190.
The buddleia leaf weevil, Cleopus japonicus, was released in New Zealand in 2006 as a biological control agent for the weed Buddleja davidii. A field study investigated any impacts on six non-target plant species since release. C. japonicus strongly preferred B. davidii, but larvae were recorded on Verbascum virgatum and Scrophularia auriculata during the choice stage of the trial. Removing B. davidii plants resulted in adults feeding on the same two exotic species. Minor exploratory feeding was recorded on the natives Hebe speciosa and Myoporum laetum. These results confirm that laboratory tests have accurately predicted field host range.

Wearing C.H. (1979). Integrated control of apple pests in New Zealand 10. Population dynamics of codling moth in Nelson. New Zealand Journal of Zoology 6: 165-199

Wearing C.H. and Charles J.G. (1989). Cydia pomonella (L.), codling moth (Lepidoptera: Tortricidae). Pp. 161-169 In: A review of biological control of insect pests and weeds in New Zealand 1874 to 1987, P.J. Cameron, R.L. Hill, J. Bain and W.P. Thomas (Ed.) CAB International Institute of Biological Control 10, CAB International, Wallingford, UK

Webb B.A. and Summers M.D. (1990). Venom and viral expression products of the endoparasitic wasp Campoletis sonorensis share epitopes and related sequences. Proceedings of the National Academy of Sciences of the United States of America 87: 4961-4965.

Weidemann G.J. (1991). Host-range testing: safety and science. Pp. 83-96 In: Microbial control of weeds, D.O. TeBeest (Ed.) Chapman and Hall Ltd, London, UK.
The review concludes that whilst phylogenetic based testing is useful it is not a completely predictable system. Genetic variation in hosts and pathogens must be taken into account in the design of future tests and this requires greater understanding of host specificity, adaptation and genetic diversity.

Wells S.M., Pyle R.M. and Collins N.M. (1983). Large blue butterflies. Pp. 451-457 In: The IUCN invertebrate red data book, (Ed.) International Union for Conservation of Nature and Natural Resources, Gland, Switzerland.

Wheeler G.S., Mc Kay F., Vitorino M.D. and Williams D.A. (2013). Biology and host range of Omolabus piceus, a weevil rejected for biological control for Schinus terebinthifolius in the USA. Biocontrol 58: 693-702.

Wheeler G.S., Pemberton R.W. and Raz L. (2007). A biological control feasibility study of the invasive weed-air potato, Dioscorea bulbifera L. (Dioscoreaceae): an effort to increase biological control transparency and safety. Natural Areas Journal 27: 269-279
The invasive weed Dioscorea bulbifera L. threatens the biodiversity of many natural areas in the southeastern United States. The authors propose that this weed will be a relatively safe target for biocontrol because of taxonomic and geographic isolation from desirable native and economic plant species. The family Dioscoreaceae is poorly represented in North America, north of Mexico, and the two native species that are sympatric with the weed are from a different subgeneric taxon than the weed. The West Indian and northern Mexican species, while more diverse, are also assigned to different subgeneric taxa, and are geographically isolated from the northern range of the weed. Further research pre-release needs to better delimit the geographic origin of the weed's North American population within its large native range to aid in the detection of suitable natural enemies. This will ensure that potential conflicts and risks can be judged and addressed during the projects to ultimately produce safer, more acceptable agents for biological control.

White J.M., Allen P.G., Moffitt L.J. and Kingsley P.P. (1995). Economic analysis of an areawide program for biological control of the alfalfa weevil. American Journal of Alternative Agriculture 10: 173-179.

Whiteman S.A., Barratt B.I.P. and Ridley G.S. (2006). A life sentence or parole: conditional release approval of biological control agents. New Zealand Plant Protection 59: 281-284.

Whitfield J.B. (1994). Mutualistic viruses and the evolution of host ranges in endoparasitoid Hymenoptera. Pp. 163-176 In: Parasitoid community ecology, B.A. Hawkins and W. Sheehan (Ed.) Oxford University Press, Oxford.

Wiklund C. (1981). Generalist vs. specialist oviposition behaviour in Papilio machaon (Lepidoptera) and functional aspects on the hierachy of oviposition preferences. Oikos 36: 163-170.

Wilgen B.W., Van Wit M.P., de Anderson H.J., Maitre D.C., le Kotze I.M., Ndala S., Brown B., Rapholo M.B. (2004). Costs and benefits of biological control of invasive alien plants: case studies from South Africa. South African Journal of Science. 100: 113-122.

Willis A.J. and Memmott J. (2005). The potential for indirect effects between a weed, one of its biocontrol agents and native herbivores: A food web approach. Biological Control 35: 299-306.
Constructing and analyzing food webs may be a valuable for assessing the post-release safety of control agents. How food webs can be used to generate testable hypotheses regarding indirect interactions between introduced agents and non-target species is shown using an exotic weed, bitou bush, Chrysanthemoides monilifera ssp. rotundata, and a key biocontrol agent for this weed in Australia, the tephritid fly, Mesoclanis polana. Food webs showed the interactions between plants, seed-feeding insects and their parasitoids.

Withers T. and Barton-Browne L. (1998). Possible causes of apparently indiscriminate oviposition in host specificity tests using phytophagous insects. Pp. 565-571 In: Pest Management - Future Challenges: Proceedings of the 6th Australasian Applied Entomological Research Conference, M. Zalucki, R. Drew and G. White (Ed.) Brisbane, The Cooperative Research Centre for Tropical Pest Management.

Withers T. and Mansfield S. (2005). Choice or no-choice tests? Effects of experimental design on the expression of host range. Pp. 620-633 In: Second International Symposium on Biological Control of Arthropods, Davos, Switzerland, 12-16 September, 2005, M.S. Hoddle (Ed.) United States Department of Agriculture, Forest Service, Washington.
Estimation of the host range of entomophagous biological control agents (parasitoids and predators) is complex. It is argued that initial test procedures should maximize the probability that the test species will be accepted for oviposition, particularly using no-choice tests. Sequential no-choice tests should only be used with caution as they have the potential to produce false negative results. Choice tests including the target host have the potential to mask the acceptability of lower ranked hosts, thereby producing false negative results. Examples where wider host ranges have been expressed in no-choice tests than in choice tests, and vice versa are presented. Sufficient variation exists that it is recommend that researchers routinely use both assay methods for host range testing of parasitoids and predators.

Withers T.M. (1997). Changes in plant attack over time in no-choice tests: an indicator of specificity. Pp. 214-217 In: Proceedings of the 50th New Zealand Plant Protection Conference, M. O'Callaghan (Ed.) Lincoln University, NZ., New Zealand Plant Protection Society Inc.

Withers T.M. (1998). Influence of plant species on host acceptance behaviour of the biocontrol agent Zymogramma bocolorata (Col.: Chrysomelidae). Biological Control 13: 55-62.

Withers T.M. (1999). Examining the hierarchy threshold model in a no-choice feeding assay. Entomologia Experimentalis et Applicata 91: 89-95.

Withers T.M. and Barton-Browne L. (2004). Behavioral and physiological processes affecting the outcome of host range testing. Pp. 40-55 In: Assessing host ranges for parasitoids and predators used for classical biological control: a guide to best practice, R.G. Van Driesche and R. Reardon (Ed.) USDA Forest Service, Morgantown, West Virginia.

Withers T.M., Allen G.R. and Reid C.A.M. (2015). Selecting potential non-target species for host range testing of Eadya paropsidis. New Zealand Plant Protection 68: 179-186.

Withers T.M., Barton-Browne L. and Stanley J. (1999). Host specificity testing in Australasia: towards improved assays for biological control. Pp. 98. CRC for Tropical Pest Management, Brisbane, Australia.

Withers T.M., Barton-Browne L. and Stanley J. (2000). How time-dependent processes can affect the outcome of assays. Pp. 27-41 In: Host-specificity testing of exotic arthropod biological control agents: the biological basis for improvement in safety, R.G. Van Driesche, T. Heard, A.S. McClay and R. Reardon (Ed.) USDA Forest Service Bulletin, Morgantown, West Virginia, USA.

Withers T.M., Carlson C.A. and Gresham B.A. (2013). Statistical tools to interpret risks that arise from rare events in host specificity testing. Biological Control 64: 177-185.

Withers T.M., Hill R.L., Paynter Q., Fowler S.V. and Gourlay A.H. (2008). Post-release investigations into the field host range of the gorse pod moth Cydia succedana Denis & Schiffermuller (Lepidoptera : Tortricidae) in New Zealand. New Zealand Entomologist 31: 67-76
The gorse pod moth Cydia succedana was released in New Zealand as a biological control agent against gorse Ulex europaeus L. in 1992 and is now widely established. Post-release evaluations of host range were undertaken using both laboratory assays and field collections on native and exotic plants related to gorse. Field surveys detected no attack on native New Zealand plant species. However, contrary to predictions based on pre-release host-range testing, several species of exotic Genisteae were shown to be hosts of C. succedana. Hypotheses to explain this unexpected non-target attack include a seasonal asynchrony between C. succedana and gorse flowering phenology, or that the original biocontrol introduction accidentally consisted of either two cryptic species or two populations with different physiological host range.

Withers T.M., McFadyen R.E. and Marohasy J. (2000). Importation protocols and risk assessment for weed biological control agents in Australia: The example of Carmenta nr ithacae. Pp. 195-214 In: Nontarget Effects of Biological Control, P.A. Follett and J.J. Duan (Ed.) Kluwer Academic Publishers, Norwell, MA.

Withers T.M., Potter K.J.B., Berndt L.A., Forgie S.A., Paynter Q.E. and Kriticos D.J. (2011). Risk posed by the invasive defoliator Uraba lugens to New Zealand native flora. Agricultural and Forest Entomology 13: 99�110.

Wright M.G., Hoffmann M.P., Kuhar T.P., Gardner J. and Pitcher S.A. (2005). Evaluating risks of biological control introductions: A probabilistic risk-assessment approach. Biological Control 35: 338-347.
Improved quantitative procedures for estimating potential non-target impacts of biological control agents are needed and a probabilistic risk-assessment approach is proposed. The procedure described uses precision trees to estimate risk based on probabilities that biological control agents will demonstrate predictable behaviour under specific conditions, based on their ecological characteristics. Trichogramma ostriniae, an egg parasitoid for Ostrina nubilalis in the US is used as case study to demonstrate the procedure, which potential for widespread use in quantifying non-target risk of biological control introductions prior to introductions being made.

Wu K., Center T.D., Yang C., Zhang J., Zhang J. and Ding J. (2013). Potential classical biological control of invasive Himalayan Yellow Raspberry, Rubus ellipticus (Rosaceae). Pacific Science 67: 59-80.

Wyckhuys K.A.G., Koch R.L., Kula R.R. and Heimpel G.E. (2009). Potential exposure of a classical biological control agent of the soybean aphid, Aphis glycines, on non-target aphids in North America. Biological Invasions 11: 857-871
In 2007, the Asian parasitoid Binodoxys communis (Hymenoptera: Braconidae) was released in North America for control of the exotic soybean aphid, Aphis glycines (Hemiptera: Aphididae). To estimate the risk of exposure of non-target aphids to B. communis, the authors merged assessments of temporal co-occurrence with projections of spatial overlap between B. communis and three native aphid species. The degree of temporal overlap depended greatly on location and the non-target aphid species. Geographic overlap between B. communis and native aphids based upon Climex modeling was used to assess the degree of geographic overlap between the parasitoid and non-target species. The authors were able to make broad statements regarding the ecological safety of current B. communis releases and their potential impact on native aphid species in North America.