Search BIREA:

View:   long pages · print version

Annotated bibliography

A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z · all

References

Edwards P. (1999). The use of choice tests in host-specificity testing of herbivorous insects. Pp. 35-43 In: Host specificity testing in Australasia: towards improved assays for biological control, T.M. Withers, L. Barton-Browne and J. Stanley (Ed.) Scientific Publishing, Department of Natural Resources, Brisbane.

Ehler L.E. (1990). Environmental impact of introduced biological control agents: implications for agricultural biotechnology. Pp. 85-96 In: Risk assessment in agricultural biotechnology, J.J. Marois and G. Breuning (Ed.) California Division of Agriculture and Natural Resources, Oakland.

Ehler L.E. (1999). Critical issues related to nontarget effects in classical biological control of insects. Pp. 3-13 In: Nontarget effects of biological control introductions, P.A. Follett and J.J. Duan (Ed.) Kluwer Academic Publishers, Norwell, Massachusetts, USA.

Elkinton J.S., Parry D. and Boettner G.H. (2006). Implicating an introduced generalist parasitoid in the invasive browntail moth's enigmatic demise. Ecology 87: 2664-2672.
The parasitoid Compsilura concinnata (tachinid) is considered an example of biological control gone wrong. It was introduced for gypsy moth, Lymantria dispar, and now attacks more than 180 species of native Lepidoptera in North America. It failed to control gypsy moth, data suggest that parasitism by C. concinnata is the cause of the near extinction of another exotic lepidopteran, the browntail moth (Euproctis chrysorrhoea). Despite this beneficial role played by C. concinnata in controlling the browntail moth, the authors do not advocate introduction of generalist biological control agents, which can have unpredictable and far-reaching impacts.

Elkinton, J.S. and Boettner, C.J. (2012). Benefits and harm caused by the introduced generalist tachinid, Compsilura concinnata, in North America. Biocontrol 57: 277�288
Compsilura concinnata (Meigen) is a highly generalist tachinid parasitoid that was introduced in the USA to control gypsy moth and browntail moth. The impact on gypsy moth was thought to be minor, although research with experimentally created populations of gypsy moth suggests that it may be more important than previously realized. Studies on browntail moth suggest that C. concinnata is probably the main reason browntail moth disappeared from most of its former range in North America. Research on giant silk moths suggests that C. concinnata has become the major source of mortality among several species and may be responsible for the notable decline in their densities that has occurred over the last century. C. concinnata is considered an example of a generalist natural enemy that should be avoided in classical biological control introductions, yet in the case of browntail moth its effect has been extremely beneficial.

ERMA New Zealand (1998). Annotated methodology for the consideration of applications for hazardous substances and new organisms under the HSNO Act 1996. ERMA New Zealand, Wellington, New Zealand. 28 pp.

ERMA New Zealand (2000). Pseudaphycus maculipennis for the control of the obscure mealybug (Pseudococcus viburni). Evaluation and Review Report.

Etzel L.K. and Legner E.F. (1999). Culture and colonisation. Pp. 125-197 In: Handbook of Biological Control: Principles and Applications of Biological Control, T.S. Bellows and T.W. Fisher (Ed.) Academic Press.

European and Mediterranean Plant Protection Organization (EPPO) (2010). Import and release of non-indigenous biological control agents. Bulletin OEPP/EPPO Bulletin 40: 335-344

Evans A.A., Barratt B.I.P. and Emberson R.M. (1997). Field cage and laboratory parasitism of Nicaeana cervina by Microctonus aethiopoides. Pp. 223-226 In: Proceedings of the 50th New Zealand Plant Protection Conference, M.R. O'Callaghan (Ed.) New Zealand Plant Protection Society Inc.
A study was carried out to compare parasitism of the NZ native weevil Nicaeana cervina Broun by Microctonus aethiopoides Loan in field cage versus laboratory conditions. Total parasitism was 40-55% and 15% in laboratory and field cages, respectively. The level of parasitism obtained in the field cages was similar to that recorded in a natural population nearby.

Evans A.A., Barratt B.I.P. and Ferguson C.M. (1994). Susceptibility of legume and Hieracium spp. seedlings to feeding by native broad-nosed weevils (Coleoptera: Curculionidae). Pp. 206-209 In: Proceedings of the 47th New Zealand Plant Protection Conference, A.J. Popay (Ed.) Waitangi Hotel, Pahia, N.Z., New Zealand Plant Protection Society Inc.

Evans W.E. and England S. (1996). Indirect interactions in biological control of insects: pests and natural enemies in alfalfa. Ecological Applications 6: 920-930.
Trophic interaction between alfalfa weevil, Hypera postica, and its parasitoid Bathyplectes curculionis, along with pea aphid (which produce honeydew, of value to the parasitoid) and ladybird beetles which feed on aphids and H. postica larvae. The results emphasise the complexity of these interactions.