Search BIREA:

View:   short pages · print version

A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z · all top

References

Jacas J.A., Urbaneja A. and Vi�uela E. (2006). History and future of introduction of exotic arthropod biological control agents in Spain: A dilemma? BioControl 51: 1-30.
More success for IBCAs has been achieved with seasonal inoculative releases (50.0% of cases) than for classical biological control programs (17.1% of cases). Concerns about potential non-target effects but post-release evaluation has often been insufficient to draw any conclusions about them. Most of the biological control agents introduced in Spain were parasitoids (n = 53), and the remainder predators (n = 12). Only four parasitoids are considered monophagous. Using information from literature and the internet, the mean number of host species parasitized by parasitoids is 15.2, Therefore, polyphagy appears to be quite common among the IBCAs that have been introduced in Spain.

Jallow M.F.A. and Zalucki M.P. (1996). Within- and between-population variation in host-plant preference and specificity in Australian Helicoverpa armigera (H�bner) (Lepidoptera: Noctuidae). Australian Journal of Zoology 44: 503-519.

Jarvis P.J., Fowler S.V., Paynter Q. and Syrett P. (2006). Predicting the economic benefits and costs of introducing new biological control agents for Scotch broom Cytisus scoparius into New Zealand. Biological Control 39: 135-146

Jenner WH., Kuhlmann U. (2010). Refining the implementation of arthropod classical biological control. Journal fur Kulturpflanzen 62: 102-106.
The authors are using current biological control projects to tackle problems associated with estimating agent host specificity and risk assessment. These include key host range testing issues for arthropod biolocical control including methods for selection of non-target species, design and implementation of host specificity experiments, and extrapolation of laboratory results to a field context.

Jetter K. (2005). Economic framework for decision making in biological control. Biological Control 35: 348-357.
A technique known as threshold cost/benefit analysis is presented and an example on how to apply this method is illustrated using the yellow starthistle biological control program. The results show that incorporating uncertainty into the analysis can have a significant impact on the decision to undertake a biological control program.

Johnson M.T., Follett P.A., Taylor A.D. and Jones V.P. (2005). Impacts of biological control and invasive species on a non-target native Hawaiian insect. Oecologia 142: 529-540.
Adverse impacts on endemic Hawaiian koa bug, Coleotichus blackburniae White (Hemiptera: Scutelleridae), by parasitoids introduced for control of the southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae) were examined using life tables. Self-introduced generalist egg predators, had the greatest impacts on C. blackburniae populations. Effects of intentionally introduced parasitoids were relatively minor, although the tachinid T. pilipes showed potential for large impacts at individual sites. In retrospect, non-target attacks by biological control agents on C. blackburniae were predictable, but not the environmental range and magnitude of impacts.

Julien M.H., Skarratt B. and Maywald G.F. (1995). Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila. Journal of Aquatic Plant Management 2: 55-60

Julien, M. and Griffiths M.W. (1999). Biological Control of Weeds. A World Catalogue of Agents and their Target Weeds. CABI Publishing, Wallingford, UK. 223 p.

top