Search BIREA:

View:   short pages · print version

A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z · all top

References

Mafokoane L.D., Zimmermann H.G. and Hill M.P. (2007). Development of Cactoblastis cactorum (Berg) (Lepidoptera : pyralidae) on six north American Opuntia species. African Entomology 15: 295-299
The recent arrival and spread of Cactoblastis cactorum in North America has raised concerns for the native Opuntia species. The host range of the moths was examined in South Africa. Results showed that although O. ficusindica is the preferred host for C. cactorum in South Africa, the moth is nevertheless able to utilize several other species of Opuntia as hosts.

Malone L.A., Todd J.H., Burgess E.P.J., Walter C., Wagner A. and Barratt B.I.P. (2010). Developing risk hypotheses and selecting species for assessing non-target impacts of GM trees with novel traits: the case of altered-lignin pine trees. Environmental Biosafety Research 9: 181-198.

Mansfield S. and Mills N.J. (2004). A comparison of methodologies for the assessment of host preference of the gregarious egg parasitoid Trichogramma platneri. Biological Control 29: 332-340.

Marohasy J. (1996). Host shifts in biological weed control: real problems, semantic difficulties or poor science? International Journal of Pest Management 42: 71-75.
Many biologists perceive organisms as constantly evolving and therefore consider the host plant ranges of biological control agents as likely to undergo adaptive changes should environmental conditions change, after successful biological control. However, despite the introduction of over 600 insect species from one geographic region to another for biological weed control during this century, there are relatively few documented cases of changes in host plant range. It is concluded that apparent additions to host range can be explained in terms of established behavioural concepts of preadaptation, threshold change resulting from host deprivation, and effects of experience (learning). The study highlights the inappropriate term 'host shift' and it is concluded that evidence from biological weed control contradicts some aspects of ecological and evolutionary theory.

Marohasy J. (1998). The design and interpretation of host-specificity tests for weed biological control with particular reference to insect behaviour. Biocontrol News and Information 19: 13-20.
Current host specificity procedures are reviewed and a new procedure proposed that takes into account mechanisms known to underlie the behavioural process of host plant finding and acceptance. This minimizes the risk of rejection of safe insect species or the release of potentially unsafe insect species for weed biological control. The period of time between the acceptance of the target weed and lower-ranked plant species by candidate biological control agents, can also be determined. This period may be as important a measure of specificity as the actual number of plant species susceptible to attack.

Mason P.G. and Kuhlmann U. (2002). Regulations are necessary for biological control agents. IOBC/wprs Bulletin 25: 165-171.

Mason P.G., Broadbent A.B., Whistlecraft J.W. and Gillespie D.R. (2011). Interpreting the host range of Peristenus digoneutis and Peristenus relictus (Hymenoptera: Braconidae) biological control agents of Lygus spp. (Hemiptera: Miridae) in North America. Biological Control 57: 94-102.

Mathenge, C.W., Holford, P., Hoffmann, J.H., Zimmermann, H.G., Spooner-Hart, R., Beattie, G.A.C. (2010). Determination of biotypes of Dactylopius tomentosus (Hemiptera: Dactylopiidae) and insights into the taxonomic relationships of their hosts, Cylindropuntia spp. Bulletin of Entomological Research 100: 3, 347-358

McClay A.S. and Balciunas J.K. (2005). The role of pre-release efficacy assessment in selecting classical biological control agents for weeds - applying the Anna Karenina principle. Biological Control 35: 197-207

McCoy E.D. and Frank J.H. (2010). How should the risk associated with the introduction of biological control agents be estimated? Agricultural and Forest Entomology 12: (1) 1-8.
Florida has a large burden of invasive species, and pre-release testing for nontarget effects has historically beeen inadequate. The authors suggest some ways in which balancing the risks and associated costs of releasing a biological control agent against the risks and associated costs of not releasing the agent may be improved. The precautionary principle applied to biological control falls short as a guide because it does not provide a prescription for action. Florida case histories illustrate the complexity and urgency related to developing such a prescription.

McEvoy P.B. (1996). Host specificity and biological pest control. BioScience 46: 401-405.
This review of host specificity and biological pest control is set out under the following headings: biological control organisms used to control weeds; biological control organisms used to control arthropods; and other aspects of biological control.

McEvoy P.B. and Coombs E.M. (1999). Biological control of plant invaders: regional patterns, field experiment and structured population models. Ecological Applications 9: 387-401

McEvoy P.B. and Coombs E.M. (1999). Why things bite back: unintended consequences of biological weed control. Pp. 167-194 In: Nontarget effects of biological control introductions, P.A. Follett and J.J. Duan (Ed.) Kluwer Academic Publishers, Norwell, Massachusetts, USA.

McEvoy P.B., Karacetin E. and Bruck D.J. (2008). Can a pathogen provide insurance against host shifts by a biological control organism? Pp. 37-42 In: Proceedings of the XII International Symposium on Biological Control of Weeds, (Ed.) La Grande Motte, France, 22-27 April, 2007.
The cinnabar moth, Tyria jacobaeae (L.) (Lepidoptera: Arctiidae is less effective than alternatives (such as the ragwort flea beetle Longitarsus jacobaeae (Waterhouse) Coleoptera: Chrysomelidae) for controlling ragwort, Senecio jacobaea L. (Asteraceae), and it attacks non-target plant species. It also carries a disease (a host-specific microsporidian Nosema tyriae). We used a life table response experiment to estimate the independent and interacting effects of Old World and New World host plant species (first trophic level) and the entomopathogen (third trophic level) on the life cycle and population growth of the cinnabar moth (second trophic level). We found the population growth rate of the cinnabar moth is sharply reduced on novel compared with conventional host plants by interacting effects of disease and malnutrition. Paradoxically, a pathogen of the cinnabar moth may enhance weed biological control by providing insurance against host shifts.

McFadyen R.E. (2004). Biological control: managing risks or strangling progress? Pp. 78-81 In: 14th Australian Weeds Conference. Weed management: balancing people, planet, profit, B. M. Sindel and S. B. Johnson (Ed.) Wagga Wagga, New South Wales, Australia, 6-9 September 2004

McFadyen R.E.C. (1998). Biological control of weeds. Annual Review of Entomology 43: 369-393.

McNeill M.R., Barratt B.I.P. and Evans A.A. (2000). Behavioural acceptability of Sitona lepidus (Coleoptera: Curculionidae) to the parasitoid Microctonus aethiopoides (Hymenoptera: Braconidae) using the pathogenic bacterium Serratia marcescens Bizio. Biocontrol Science and Technology 10: 205-214.
A method was developed to distinguish beween behavioural and physiological barriers to successful parasitism of a host. The insect pathogenic bacterium Serratia marcescens Bizio was placed on the ovipositor of the wasp and used as a marker for parasitoid ovipositor penetration.

McNeill M.R., Ferguson C.M., Bixley A.S. and Barratt B.I.P. (2009). Development of Microctonus aethiopoides Loan through multiple generations of novel weevil hosts in the laboratory. Pp. 617-618 in: Proceedings of the 3rd International Symposium on Biological Control of Arthropods, P.G. Mason, D.R. Gillespie and C. Vincent (Ed.) Christchurch, New Zealand.

McNeill M.R., Proffitt J.R., Gerard P.J. and Goldson S.L. (2006). Collections of Microctonus aethipopoides Loan (Hymenoptera: Braconidae) from Ireland. New Zealand Plant Protection 59: 290-296.

McNeill M.R., Vittum R.J. and Jackson T.J. (2000). Serratia marcescens as a rapid indicator of Microctonus hyperodae oviposition activity in Listronotus maculiocollis and potential application of the technique to host-specificity testing. Entomologia Experimentalis et Applicata 95: 193-200.
Listronotus maculicollis (Dietz) (Coleoptera: Curculionidae) is a potential novel host of the braconid parasitoid Microctonus hyperodae Loan, but initial studies have shown that levels of parasitism are lower than in the natural host L. bonariensis (Kuschel). The incidence of ovipositor penetration by the parasitoid M. hyperodae into adult L. maculicollis was measured by immersing the ovipositor of the parasitoid in the facultative pathogen, Serratia marcescens Bizio. Adult weevils were then exposed to parasitoids rapid mortality used as an indicator of oviposition penetration. Application of bacteria to the parasitoid ovipositor provided a rapid, simple test for ovipositor penetration, which shows potential for separation of behavioural and physiological defence mechanisms in parasitoid/host range studies.

McNeill M.R., Withers T.M. and Goldson S.L. (2005). Potential non-target impact of Microctonus aethiopoides Loan (Hymenoptera: Braconidae) on Cleopus japonicus Wingelm�ller (Coleoptera: Curculionidae), a biocontrol agent for putative release to control the butterfly bush Buddleja davidii Franchet in New Zealand. Australian Journal of Entomology 44: 201-207.
Cleopus japonicus Wingelm�ller (Coleoptera: Curculionidae) is being considered for release to control buddleia Buddleja davidii in New Zealand. As part of the pre-release testing, Moroccan and Irish biotypes of the solitary endoparasitoid Microctonus aethiopoides Loan (Hymenoptera: Braconidae) were evaluated for potential non-target impacts on adult C. japonicus should release occur. Parasitoid behavioural attraction was assessed using the pathenogenic bacterium Serratia marcescens (Enterobactereaceae), as an indicator of ovipositor penetration. Physiological suitability was assessed by comparing parasitism of C. japonicus with the natural hosts of the respective parasitoid biotypes. C. japonicus was found to be behaviourally acceptable to both Moroccan and Irish M. aethiopoides, however, it did not support development of either Moroccan or Irish M. aethiopoides biotypes suggesting that the impact of M. aethiopoides on field populations will be negligible.

McPartland J.M. and Nicholson J. (2003). Using parasite databases to identify potential nontarget hosts of biological control organisms. New Zealand Journal of Botany 41: 699-706
The authors propose that biocontrol researchers use internet-available databases to identify potential nontarget organisms that share parasites (biotrophic pathogens and pests) with target hosts, and add these organisms to test species lists. Marijuana (Cannabis sativa) has been targeted for biocontrol, and host range studies have focused upon the Moraceae. A list of Cannabis parasites was compared with database lists of pests and pathogens for hosts in the order Urticales. The databases revealed seven Cannabis biotrophic parasites that were shared by hosts in the family Urticaceae, one biotroph shared by a host in the Celtidaceae, and no biotrophs shared by hosts in the Moraceae, Cercropiaceae, or Ulmaceae. These results suggest that biocontrol host range studies of Cannabis parasites should focus on the Urticaceae and Celtidaceae as well as the Moraceae and that taxonomic relationships within the Uricales be reassessed.

Memmott J. (1999). Food webs as a tool for studying nontarget effects in biological control. Pp. 147-163 In: Nontarget effects of biological control introductions, P.A. Follett and J.J. Duan (Ed.) Kluwer Academic Publishers, Norwell, Massachusetts, USA.

Memmott J., Fowler S.V., Hill R.L. (1998). The effect of release size on the probability of establishment of biological control agents: Gorse thrips (Sericothrips staphylinus) released against gorse (Ulex europaeus) in New Zealand. Biocontrol Science and Technology 8: 103-115.

Memmott J., Martinez N.D. and Cohen J.E. (2000). Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. Journal of Animal Ecology 69: 1-15.
A food web is presented which describes trophic interactions among the herbivores, parasitoids, predators and pathogens associated with broom, Cytisus scoparius (L.) Link. The web comprises a total of 154 taxa: one plant, 19 herbivores, 66 parasitoids, 60 predators, five omnivores and three pathogens. There are 370 trophic links between these taxa in the web. The taxa form 82 functionally distinct groups, called trophic species. Predators consumed more species than did parasitoids; externally feeding herbivores were most vulnerable and the concealed herbivores were least vulnerable. Miners were vulnerable to the most parasitoid species and externally feeding herbivores were the most vulnerable to predators. Relative sizes of predators and parasitoids are discussed.

Messing R.H. (1992). Biological control in island ecosystems: cornerstone of sustainable agriculture or threat to biological diversity. Pacific Science 46: 387-388.

Messing R.H. (2005). Hawaii as a role model for comprehensive U.S. Biocontrol legislation: the best and the worst of it. Pp. 686-691 In: Second International Symposium on Biological Control of Arthropods, Davos, Switzerland, 12-16 September, 2005, M.S. Hoddle (Ed.) United States Department of Agriculture, Forest Service, Washington.
The USA currently has no comprehensive, integrated legislative or regulatory framework to manage the permitting of imported biological control agents. In contrast, the State of Hawaii has specific, detailed and exhaustive rules for obtaining import and release permits for natural enemies and this could serve as a useful model for national protocols, with coordinated scientific evaluation at several levels of specialization and input from a wide range of concerned parties. The author suggests that the best parts of the Hawaii system are captured, and the legalistic and bureaucratic aspects removed, then a thorough, streamlined, efficient, transparent, accountable and enabling regulatory framework could be put in place that would safeguard non-target species while facilitating biological control and environmentally sound pest management at the national level.

Messing R.H. and Xin-Geng W. (2008). Competitor-free space mediates non-target impact of an introduced biological control agent. Ecological Entomology 34: 107-113
The authors show that competitor-free space is a key mechanism maintaining an apparent host shift by an introduced biocontrol agent onto a non-target species.

Messing R.H., Roitberg B.D. and Brodeur J. (2006). Measuring and predicting indirect impacts of biological control, competition, displacement and secondary interactions. Pp. 64-77 In: Environmental impact of invertebrates for biological control of arthropods - methods and risk assessment, F. Bigler, D. Babendreier and U. Kuhlmann (Ed.) CABI Publishing, Wallingford, UK

Miller J.R. and Strickler K.L. (1984). Finding and accepting host plants. Pp. 127-157 In: Chemical Ecology of Insects, W.J. Bell and R.T. Card� (Ed.) Chapman & Hall, London.

Miller M.L. and Aplet G.H. (2005). Applying legal sunshine to the hidden regulation of biological control. Biological Control 35: 358-365.
This article identifies a legal gap in current USDA policy concerning decisions about the review and release of biological pest control agents. Current practices do not provide sufficient information for biologists or an informed public to understand or evaluate policy decisions and environmental outcomes. The USDA needs to comply with federal law by making all relevant documents and data available on the internet. Federal law and policy requires that the USDA release all relevant information, and make it readily accessible to all interested parties.

Mills N.J. (2006). Accounting for differential success in the biological control of homopteran and lepidopteran pests. New Zealand Journal of Ecology 30: 61-72.

Mills N.J. and Getz W.M. (1996). Modelling the biological control of insect pests: a review of host-parasitoid models. Ecological Modelling 92: 121-143

Mills N.J. and Gutierrez A.P. (1999). Biological contro of insects: a tritrophic perspsective. Pp. 89-102 In: Theoretical approaches to biological control, B. A. Hawkins and H. V. Cornell (Ed.) Cambridge University Press, Cambridge, UK

Mills N.J. and Kean J.M. (2010). Modelling, behavioural studies and molecular approaches: Methodological contributions to biological control success. Biological Control (in press).

Moeed A., Hickson R. and Barratt B.I.P. (2006). Principles of environmental risk assessment of invertebrates in biological control of arthropods. Pp. 241-253 In: Environmental impact of arthropod biological control: methods and risk assessment., U. Kuhlmann, F. Bigler and D. Babendreier (Ed.) CABI Bioscience, Delemont, Switzerland.

Morehead S.A. and Feener D.H. (2000). An experimental test of potential host range in the ant parasitoid Apocephalus paraponerae. Ecological Entomology 25: 332�340.

Morin L. and Edwards P.B. (2006). Selection of biological control agents for bridal creeper: a retrospective review. Australian Journal of Entomology 45: 287-291

Morin L., Evans K.J. and Sheppard A.W. (2006). Selection of pathogen agents in weed biological control: critical issues and peculiarities in relation to arthropod agents. Australian Journal of Entomology 45: 349-365

Morin L., Hill R.L. and Matayoshi S. (1997). Hawaii's successful biological control strategy for mist flower (Ageratina riparia) - can it be transferred to New Zealand? Biocontrol News and Information 18: 77-88

Moriya S., Inoue K., Shiga M. and Mabuchi M. (1992). Interspecific relationship between and introduced parasitoid, Torymus sinensis Kamijo, as a biological control agent of the chestnut gall wasp, Dryocosomus kuriphylus Yasumatsu, and an endemic parasitoid, T. beneficus Yasumatsu et Kamijo. Acta Phytopathologia et Entomologica Hungarica 27: 479-483.
The interspecific relationship of a parasitoid of Dryocosmus kuriphilus that was endemic to Japan (Torymus beneficus) and an introduced control agent (T. sinensis) was investigated. The ovipositor sheath is longer in T. sinensis than in T. beneficus and 1990 they made up about 90% of the emerging parasitoids. In crossing experiments, females with ovipositor sheaths of intermediate length were observed and F1 females were fertile when backcrossed to males of the parent species. Females with intermediate ovipositors were observed in the field from 1984.

Morrison L.W. and Porter S.D. (2006). Post-release host-specificity testing of Pseudacteon tricuspis, a phorid parasitoid of Solenopsis invicta fire ants. Biocontrol 51: 195-205.

Morrison-Lloyd W. (2006). Post-release host-specificity testing of Pseudacteon tricuspis, a phorid parasitoid of Solenopsis invicta fire ants. BioControl 51: 195-205.

Muller-Scharer, H. and Schaffner, U. (2008). Classical biological control: exploiting enemy escape to manage plant invasions. Biological Invasions 10: 859-874
Key issues considered to be important for safe, efficient, and successful classical biological control project are discussed. These include selection of effective control agents, host specificity of the biological control agents, implications of the genetic population structure of the target populations, and potential impact on native food webs. It is recommended that pre-release impact assessment should focus on how to reach high densities of the control agents, and aspects of tolerance to, and compensation of herbivory; more effort should be made to integrate and combine biological control with existing or potential management options.

Munro V.M.W. and Henderson I.F. (2002). Nontarget effect of entomophagous biocontrol: shared parasitism between native lepidopteran parasitoids and the biocontrol agent Trigonospila brevifacies (Diptera: Tachinidae) in forest habitats. Environmental Entomology 32: 388-396.
The parasitoid guild attacking Tortricidae on broadleaf/podocarp forests was studied at six sites in the central North Island. Host parasitoid interactions at a community level between native parasitoids and the introduced species Trigonospila brevifacies (Hardy) were investigated. T. brevifacies was numerically dominant in the tortricid parasitoid guild and it parasitized more species of Tortricidae than other parasitoids at the North Island forest sites surveyed. Only the introduced Australian canefruit pest Eutorna phaulocosma Meyrick (Lepidoptera: Oecophoridae) received a higher proportion of parasitism from T. brevifacies than any of the native Lepidoptera. All native parasitoid species were less abundant than T. brevifacies.

Murdoch W.W., Briggs C.J. and Nisbet R.M. (1996). Competitive displacement and biological control in parasitoids: A model. American Naturalist 148: 807-826.
California red scale is controlled in many areas by parasitoids of the genus Aphytis. In southern California, Aphytis lingnanensis provided inadequate control of red scale in inland valleys. Aphytis melinus was introduced, competitively displaced A. lingnanensis within a few red scale generations, and caused satisfactory biological control. Aphytis melinus is successful on smaller- sized scale than A. lingnanensis, and a stage-structured parasitoid-host model is presented in which the two parasitoid species are the same except for A. melinus's size-dependent advantage in sex allocation. This model can account for the competitive displacement of A. lingnanensis and the improvement in biological control. Aphytis melinus can also produce an additional female egg from larger red scale, and this increases its advantage in competition. The effects of other model parameters were discussed along with implications for a predictive theory of biological control.

Murray T.J., Withers T.M. and Mansfield S. (2010). Choice versus no-choice test interpretation and the role of biology and behavior in parasitoid host specificity tests. Biological Control 52: 2, 153-159.
The need to improve methods and interpretation of host specificity tests for arthropod natural enemies has been clearly identified. In this study, an established exotic host/parasitoid system was used to assess the outcomes and predictive accuracy of no-choice compared to paired choice tests within small laboratory arenas. Host acceptance by two egg parasitoids, Enoggera nassaui and Neopolycystus insectifurax (Pteromalidae), was interpreted in light of percent parasitism, offspring sex ratios and observed parasitoid behavior. Both test designs predicted that D. semipunctata is within the ecological host range of the two parasitoid species, whereas field evidence suggests this is a false positive result. Percent parasitism of all hosts was higher in no-choice compared to choice tests and was predictive of rank order of host preference in choice tests. Presence of the most preferred host did not increase attack on lower ranked hosts. The results supported the assertion that both no-choice and choice tests along with detailed behavioral studies should be conducted for interpretation of pre-release host specificity tests and prediction of field host range.

top