Search BIREA:

View:   long pages · print version

Annotated bibliography

A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z · all

References

O'Callaghan M. and Brownbridge M. (2009). Environmental impacts of microbial control agents used for control of invasive pests. In: Use of Microbes for Control and Eradication of Invasive Arthropods, Hajek, AE., Glare, TR., O'Callaghan, M. (Eds.) Progress in biological control Vol. 6: 305-327
Insect pathogens vary in key characteristics which determine their safety profile with respect to impacts on non-target species. Laboratory testing against beneficial species and post-application monitoring of impacts suggest that effects on non-target organisms, in comparison with other control methods are environmentally benign. Biopesticides can be attractive control options in many situations, and their use is likely to have minimal impact on beneficial and other non-target species. For example Bacillus thuringiensis, has not precipitated any major ecological disturbances, even when used in very intensive and prolonged eradication programmes.

O'Hanlon P.C., Briese D.T. and Peakall R. (2000). Know your enemy: the use of molecular ecology in the Onopordum biological control project. Proceedings of the X International Symposium on Biological Control of Weeds: 281-288
Accurate identification of the target weed(s) for a biological control project is critical to the success of a biological control project, particularly where the weed may comprise different biotypes or be part of a species complex. Molecular ecology provides tools for resolving the identity of weeds. An example is given with a hybrid swarm of Onopordum spp. in Australia. Molecular markers can be used to better understand the phylogeny of plant groups containing the target weed(s).

Obrycki J.J. (1989). Parasitization of native and exotic coccinellids by Dinocampus coccinellae (Schrank) (Hymenoptera: Braconidae). Journal of the Kansas Entomological Society 62: 211-218.
The suitability of 3 introduced and 3 native (to the USA) coccinellids as hosts for the braconid Dinocampus coccinellae was examined in the laboratory at 22�C and LD 16:8. Adults of the Nearctic species (Coleomegilla maculata, Cycloneda munda and Hippodamia convergens) and one Palaearctic species, Coccinella septempunctata, were suitable hosts for D. coccinellae. The mean development time for the parasitoid ranged from 30 to 33.3 days in these hosts, while successful parasitism varied between 30 and 57%. Only 1.5% of D. coccinellae emerged from Propylea quattuordecimpunctata, development times being significantly longer (37 days) with this host. The parasitoid failed to develop in H. variegata.

Obrycki J.J., Elliott N.C. and Giles L.G. (1999). Coccinellid introductions: potential for and evaluation of nontarget effects. Pp. 127-145 In: Nontarget effects of biological control introductions, P.A. Follett and J.J. Duan (Ed.) Kluwer Academic Publishers, Norwell, Massachusetts, USA.

OECD E.D. (2003). Guidance for information requirements for regulation of invertebrates as biological control agents (IBCAs). Organisation for Economic Co-operation and Development. 19 pp.

Olckers T. and Borea C. (2009). Assessing the risks of releasing a sap-sucking lace bug, Gargaphia decoris , against the invasive tree Solanum mauritianum in New Zealand. BioControl 54: 143-154
The South American tree Solanum mauritianum Scopoli (Solanaceae), a major environmental weed in South Africa and New Zealand, has been targeted for biological control, with releases of agents restricted to South Africa. The leaf-sucking lace bug, Gargaphia decoris Drake (Tingidae), has become established in South Africa with reports of severe damage. Host-specificity testing was carried out in South Africa in laboratory and open-field trials, with cultivated and native species of Solanum from New Zealand showed that none of the three native New Zealand Solanum species are acceptable as hosts. Some cultivars of S. melongena L. (eggplant) supported feeding, development and oviposition in the no-choice tests. Field trials and risk assessment indicate that the insect has a host range restricted to S. mauritianum. An application for permission to release G. decoris in New Zealand will be submitted to the regulatory authority.

Onstad D.W. and McManus M.L. (1996). Risks of host range expansion by parasites of insects. BioScience 46: 430-435.
The authors discuss the estimation of risks that biological control agents pose to nontarget species. There has been no demonstration that biological control agents have threatened, endangered or extirpated any native insect or arachnid species in the USA.

Orlinskii A.D. (1997). Precautions for and experiences with introduction of exotic biological control agents into the former USSR. Pp. 61-68 In: EPPO/CABI workshop on safety and efficacy of biological control in Europe, I.M. Smith (Ed.) Blackwell Science Ltd., Oxford.

Orr C.J., Obrycki J.J. and Flanders R.V. (1992). Host acceptance behaviour of Dinocampus coccinellae (Hymenoptera: Braconidae). Annals of the Entomological Society of America 85: 722-730.
Describes observations of behaviour and parasitism of the braconid Dinocampus coccinellae exposed to a number of coccinellids.