Search BIREA:

View:   long pages · print version

Annotated bibliography

A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z · all

References

Samways M.J. (1994). Insect Conservation Biology. Chapman & Hall, London. 358 pp.

Samways M.J. (1997). Classical biological control and biodiversity conservation: what risks are we prepared to accept? Biodiversity and Conservation 6: 1309-1316.

Sands D.P.A. (1993). Effects of confinement on parasitoid-host interactions: interpretation and assessment for biological control of arthropod pests. Pp. 196-199 In: Pest Control in Sustainable Agriculture, S.A. Corey, D.J. Dall and W.M. Milne (Ed.) CSIRO, Canberra, Australia.

Sands D.P.A. (1998). Guidelines for testing host specificity of agents for biological control of arthropod pests. Pp. 556-560 In: Pest Management - Future Challenges: Proceedings of the 6th Australasian Applied Entomological Research Conference, M. Zalucki, R. Drew and G. White (Ed.) The Cooperative Research Centre for Tropical Pest Management.

Sands D.P.A. and Coombs M.T. (1999). Evaluation of the Argentinean parasitoid, Trichopoda giacomelli (Diptera: Tachinidae), for biological control of Nezara viridula (Hemiptera: Pentatomidae) in Australia. Biological Control 15: 19-24.
Trichopoda giacomellii (Blanchard) (Diptera: Tachinidae), was evaluated prior to its release in Australia as a biological control agent for the green vegetable bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). In no-choice host specificity studies, females of T. giacomellii were exposed in separate tests to selected representatives of indigenous Australian Hemiptera. In addition to the target N. viridula, only species of the 'pentatoma' group of Pentatomidae, Plautia affinis Dallas, Alciphron glaucas (Fabricius), and Glaucias amyoti (White), attracted oviposition and supported complete development by T. glacomellii. Other species attracted oviposition but parasitoids failed to develop, and others failed to attract oviposition.

Sands D.P.A. and Van Driesche R.G. (2000). Evaluating the host range of agents for biological control of arthropods: rationale, methodology and interpretation. Pp. 69-83 In: Host-specificity testing of exotic arthropod biological control agents: the biological basis for improvement in safety, R.G. Van Driesche, T. Heard, A.S. McClay and R. Reardon (Ed.) USDA Forest Service Bulletin, Morgantown, West Virginia, USA.

Sands D.P.A. and Van Driesche R.G. (2004). Using the scientific literature to estimate the host range of a biological control agent. Pp. 15-23 In: Assessing host ranges for parasitoids and predators used for classical biological control: a guide to best practice, R.G. Van Driesche and R. Reardon (Ed.) USDA Forest Service, Morgantown, West Virginia.

Scherwinski K., Grosch R. and Berg G. (2007). Root application of bacterial antagonists to field-grown lettuce: effects on disease suppression and non-target microorganisms. Bulletin OILB/SROP 30: 257
This paper discusses biological control of the phytopathogenic fungus Rhizoctonia solani which reduced yield in agricultural and horticultural crops using naturally antagonistic bacteria. The two rhizobacteria Pseudomonas trivialis (3Re2-7) and Pseudomonas fluorescens (L13-6-12) as well as the potato endophyte Serratia plymuthica (3Re4-18) were selected as effective Rhizoctonia antagonists. The impact of these bacteria on non-target lettuce-associated microorganisms was assessed after their root application in two field trials in Germany and all resulted in a significant increase of the dry weight and a significant decrease of the disease severity. The microbial communities of the rhizosphere, the endorhiza and the endophyllosphere of field-grown lettuce were examined and only transient changes in the composition of the bacterial communities were found. The authors concluded that an environmentally friendly and efficient biocontrol strategy can be developed.

Schulten G.G.M. (1997). The FAO Code of Conduct for the import and release of exotic biological. Pp. 29-36 In: EPPO/CABI workshop on safety and efficacy of biological control in Europe, I.M. Smith (Ed.) Blackwell Science Ltd., Oxford.

Secord D. and Kareiva P. (1996). Perils and pitfalls in the host specificity paradigm. BioScience 46: 448-453.
The importance of host specificity in biological control agents is discussed in relation to unexpected host shifts; specificity assessment, evolution and indirect effects; and host specificity and cost/benefit analysis for biological control.

Seymour, C.L. and Veldtman, R. (2010). Ecological role of control agent, and not just host-specificity, determine risks of biological control. Austral Ecology 35: 704-711
Gall-formers are popular as biological control agents because they are host-specific and therefore considered low risk. However, galls can also be considered to be ecological engineers, because they provide nutritional resources for native invertebrates. The Authors tested whether native invertebrates had formed associations with the gall-forming fungus Uromycladium tepperianum, introduced into South Africa to control the Australian invasive alien tree Acacia saligna, by collecting U. tepperianum galls and monitoring emergence. A number of invertebrates had formed associations with the biological control agent, including the citrus pest, Thaumatotibia leucotreta (false codling moth). The study illustrated a case of a host-specific classical biological control agent providing resources for an economically significant crop pest. The authors concuded that although biological control agents are strictly vetted to ensure host-specificity, those that become abundant and can act as ecological engineers pose risks when native biota form associations with them, resulting in a number of possible cascading ecosystem effects. There could also be economic consequences when these associated species include agricultural pests. Potential ecological effects of biological control agents, should be considered in their selection.

Shea K., Kelly D., Sheppard A.W. and Woodburn T.L. (2005). Context-dependent biological control of an invasive thistle. Ecology 86: 3174-3181.
Success of biological control of Carduus nutans using insects that attack rosettes or developing seed heads, has varied in different parts of its invaded range. Here a demographic matrix models is used to compare populations in Australia and New Zealand, to explain differences. In a New Zealand population, rapid population growth of C. nutans is driven by early life history transitions. In an Australian population, fecundity of C. nutans is of reduced importance, and survivorship of rosettes plays an increased role. These differences suggest how biocontrol agents that are successful at providing control in one situation but may fail in another.

Shelby K.S. and Webb B.A. (1999). Polydnavirus-mediated suppression of insect immunity. Journal of Insect Physiology 45: 507-514

Sheppard A., Haines M.L. and Thomann T. (2006). Native-range research assists risk analysis for non-targets in weed biological control: the cautionary tale of the broom seed beetle. Australian Journal of Entomology 45: 292-297

Sheppard A.W. (1992). Predicting biological weed control. Trends in Ecology & Evolution 7: 290-291.

Sheppard A.W. (1999). Which test? A mini review of test usage in host specificity testing. Pp. 60-69 In: Host specificity testing in Australasia: towards improved assays for biological control, T.M. Withers, L. Barton-Browne and J. Stanley (Ed.) Scientific Publishing, Department of Natural Resources, Brisbane.

Sheppard A.W. (2003). Prioritising agents based on predicted efficacy: beyond the lottery approach. Pp. 11-21 In: Improving the selection, testing and evaluation of weed biocontrol agents, H. Spafford-Jacobs and D. T. Briese (Ed.) Cooperative Research Centre for Australian Weed Management, Adelaide, Australia

Sheppard A.W., Hill R.L., DeClerck-Floate R.A., McClay A., Olckers T., Quimby P.C. and Zimmermann H.G. (2003). A global review of risk-benefit-cost analysis for the introduction of classical weed biological control agents against weeds: a crisis in the making? Biocontrol News and Information 24: 91N-108N.

Sheppard A.W., Shaw R.H. and Sforza R. (2006). Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption. Weed Research 46: 93-117
Despite more than 130 case histories in Europe against insect pests, no exotic classical biological control agent has been released in the EU against an alien invasive weed despite increasing numbers of exotic invasive plants being imported. The authors review possible European weed targets for classical biological control from ecological and socioeconomic perspectives. They also consider why classical biological control of European exotic plants remains untested, and the regulatory framework that surrounds such biological control activities within constituent countries of the EU and suggest how invasive exotic weeds in might be managed in the future in Europe.

Sheppard A.W., Van Klinken R.D. and Heard T.A. (2005). Scientific advances in the analysis of direct risks of weed biological control agents to nontarget plants. Biological Control 35: 215-226.
The strengths, weaknesses, and best practice for the different host specificity test types are now understood. Understanding the concept of fundamental host range and using this to maximize reliability in predicting field host specificity following release are still inconsistently understood or adopted. This needs to be consistently applied so the process of testing can follow a recognized process of risk analysis from hazard identification to uncertainty analysis based on the magnitude and likelihood of threats to non-targets. Modern molecular techniques are answering questions associated with subspecific variation in biological control agents with respect to host use and the chance of host shifts of agents following release. This review covers all these recent advances for the first time in one document, highlighting how inconsistent interpretation by biological control practitioners can be avoided.

Shiga M. (1999). Classical biological control of the chestnut gall wasp, Dryocosmus kuriphilus: present status and interactions between an introduced parasitoid, Torymus sinensis, and native parasitoids. Pp. 175-188 In: Biological invasions of ecosystem by pests and beneficial organisms, E. Yano, K. Matsuo, M. Shiyomi and D.A. Andow (Ed.) National Institute of Agro-Environmental Sciences, Tsukuba, Japan.
This research demonstrates a case of displacement of a native by and introduced parasitoid.

Simberloff D. (1991). Keystone species and community effects of biological control introductions. Pp. 1-19 In: Assessing ecological risks of biotechnology, L.R. Ginzburg (Ed.) Butterworth-Heinemann, Boston, Massachusetts, USA.

Simberloff D. (1992). Conservation of pristine habitats and unintended effects of biological control. Pp. 103-117 In: Selection Criteria and Ecological Consequences of Importing Natural Enemies, W.C. Kaufmann and J.E. Nechols (Ed.) Entomological Society of America, Lanham, Maryland, USA.
The effect of deliberate introductions of arthropods for biological control purposes on species in pristine habitats is examined. This paper was developed from a symposium held during the 1990 Annual Meeting of the Entomological Society of America in New Orleans, Louisiana.

Simberloff D. (2012). Risks of biological control for conservation purposes. Biocontrol 57: 263-276.

Simberloff D. and Stiling P. (1996). How risky is biological control? Ecology 77: 1965-1974.
Literature review of non-target effects of introduced biological control agents. There are few documented instances of damage to non-target organisms or the environment, however, this is not evidence that biological control is safe, because monitoring of non-target species is minimal. Predicting indirect effects is difficult, plus the fact that introduced species can disperse and evolve. Current regulation of introduced biological-control agents is considered insufficient. It is recommended that the likely impact of both the pest and its natural enemy on natural ecosystems and their species should be considered, not only on potential economic benefits.

Simberloff D. and Stiling P. (1996). Risks of species introduced for biological control. Biological Conservation 78: 185-192.
Biological control introductions have adversely affected nontarget native species, including some recent cases, and little monitoring of impacts is done, so known problems may be the tip of an iceberg. Regulations for officially releases for biological control are insufficient, and there are also freelance unregulated releases undertaken by private citizens. Cost-benefit analyses for conservation issues are difficult because it is hard to assign values to the loss of species or ecosystem functions. Cost-benefit analyses and risk assessments for biological control introductions would enforce consideration of many factors that now often receive cursory attention, and broaden public understanding of the issues.

Simberloff D. and Stiling P. (1998). How risky is biological control? Reply. Ecology 79: 1834-1836.

Sime K.R., Daane K.M., Wang X.G., Johnson M.W. and Messing R.H. (2008). Evaluation of Fopius arisanus as a biological control agent for the olive fruit fly in California. Agricultural and Forest Entomology 10, 423-431.
The egg-prepupal parasitoid Fopius arisanus (Hymenoptera: Braconidae) was evaluated in quarantine facilities as a potential biological control agent for the olive fruit fly Bactrocera oleae (Diptera: Tephritidae) in California, U.S.A. F. arisanus will not attack Tephritidae that feed in inflorescences or galls but may pose risks to native Tephritidae that feed in fruit. The broad host-range of F. arisanus with respect to fruit-feeding Tephritidae may preclude its introduction to California, as may its low fecundity and its intrinsic competitive superiority over larva l-pupal parasitoids, which include specialists on B. oleae that are currently being introduced to California. High rates of direct mortality, however, point to potential uses in augmentative biological control.

Simmonds F.J. and Bennett F.D. (1977). Biological control of agricultural pests. Pp. 464-472 In: Proc. 15th International Congress of Entomology.

Simmonds F.J., Franz J.M. and Sailer R.I. (1976). History of biological control. Pp. 788 In: Practice of biological control, C.B. Huffaker and P.S. Messenger (Ed.) Academic Press, New York.

Singer M.C. (1982). Quantification of host preference by manipulation of oviposition behaviour in the butterfly Euphydryas editha. Oecologia 52: 224-229.

Singer M.C. (1986). The definition and measurement of oviposition preference in plant-feeding insects. Pp. 65-94 In: Insect-Plant Interactions, J.R. Miller and T.A. Miller (Ed.) Springer-Verlag, New York.

Smith I.M. (1997). EPPO/CABI workshop on safety and efficacy of biological control in Europe. Blackwell Science Ltd., Oxford.

Solarz S.L. and Newman R.M. (1996). Oviposition specificity and behavior of the watermilfoil specialist Euhrychiopsis lecontei. Oecologia 106: 337-344.

Solter L.F. and Maddox J.V. (1998). Physiological host specificity of Microsporidia as an indicator of ecological host specificity. Journal of Invertebrate Pathology 71: 206-216.

Spafford-Jacob H. and Briese D.T. (2003). Improving the selection, testing and evaluation of weed biocontrol agents. CRC for Australian Weed Management Technical Series no. 7, Adelaide, Australia.

Spradberry P. (1970). Host finding by Rhyssa persuasoria L. an ichneumon parasite of siricid woodwasps. Animal Behaviour 18: 103-114

Standish R.J., Robertson A.W. and Williams P.A. (2001). The impact of an invasive weed Tradescantia fluminensis on native forest regeneration. Journal of Applied Ecology 38: 1253-1263

Stanley J.N. and Julien M.H. (1998). The need for post-release studies to improve risk assessments and decision making in classical biological control. Pp. 561-564 In: Pest Management - Future Challenges: Proceedings of the 6th Australasian Applied Entomological Research Conference, M. Zalucki, R. Drew and G. White (Ed.) The Cooperative Research Centre for Tropical Pest Management.

Stanley M.C. and Fowler S.V. (2004). Conflicts of interest associated with the biological control of weeds. Proceedings of the XI International Symposium on Biological Control of Weeds: 322-340
The introduction of weed biological control agents may be delayed or prohibited where the plant targeted for control also has beneficial attributes. Conflicts fall into one of several categories: one or more groups value the target plant for economic and/or cultural use; non-target effects of biological control; those related to biocontrol programs against native plants; and ecological effects of successful biocontrol as a result of weed use by native biota. While industry-based conflicts dominate, there has been a shift towards conflicts associated with the ecological effects of weed biocontrol. The benefits of weeds to ecosystems, particularly where weeds provide resources for native fauna, are becoming an important part of cost-benefit analyses for weed biocontrol programs. Examples where weed biocontrol programs have been delayed because of economic and ecological conflicts are given. At present, weed biocontrol programs are usually initiated only when the risk of conflict is low. Where conflict does occur, communication and cost-benefit analyses are key to ensuring resolution is found. However, cost-benefit analyses, are expensive and time-consuming, causing substantial delays to weed biocontrol programs and ongoing environmental damage as a consequence of weed invasion.

Stiling P. (2004). Biological control not on target. Biological Invasions 6: 151-159.
Summary of previously recorded information on the diet breadth of natural enemies released to control insect pests worldwide. Of released biocontrol agents in North America, 48% were recorded as generalists, 29% attacked more than one species in a genus, 23% were specialists on the target pests. So many natural enemies released in biocontrol programs against insect pests have broad diets and non-target effects are likely. In North America many parasitoids attack multiple host genera and species, with an average of 5.8 genera and 7.3 species attacked, indicating broad agreement with data from biological control releases.

Stiling P. and Simberloff D. (1999). The frequency and strength of nontarget effects of invertebrate biological control agents of plant pests and weeds. Pp. 31-43 In: Nontarget effects of biological control introductions, P.A. Follett and J.J. Duan (Ed.) Kluwer Academic Publishers, Norwell, Massachusetts, USA.

Stoltz D.B. and Xu D. (1990). Polymorphism in polydnavirus genomes. Canadian Journal of Microbiology 36: 538-543.

Strand M.R. and Obrycki J.J. (1996). Host specificity of insect parasitoids and predators. BioScience 46: 422-429.
The authors discuss the host specificity of insect parasitoids and predators under the headings: categories of predators and parasitoids; use of predatory and parasitic insects in biological control; life histories of predators and parasitoids; host range determinants; and insect natural enemies: risks and benefits to biological control.

Strong D.R. and Pemberton R.W. (2001). Food webs, risks of alien enemies and reform of biological control. Pp. 57-79 In: Evaluating indirect ecological effects of biological control, E. Wajnberg, J.K. Scott and P.C. Quimby (Ed.) CABI Publishing, Wallingford, Oxon., UK.

Stufkens M.W., Farrell J.A. and Popay A.J. (1994). Quarantine host range tests on two exotic parasitoids imported for aphid control. Pp. 149-153 In: Proceedings of the 47th New Zealand Plant Protection Conference.
Aphidius sonchi was imported from Australia as a potential biological control agent for Hyperomyzus lactucae and Ephedrus cerasicola from Norway as a potential control agent of Myzus persicae. The rate of parasitism of 17-20 aphid species was determined. E. cerasicola parasitized 5 native aphids and was not released. A. sonchi did not attack any native aphid species or their close relatives, so release of this parasitoid was approved.

Sutherst R.W. and Maywald G.F. (1985). A computerised system for matching climates in ecology. Agriculture, Ecosystems and Environment 13: 281-299.

Sutherst R.W., Maywald G.F. and Kriticos D.J. (2007). CLIMEX version 3. CD and User's Guide. Hearne Scientific Software, Melbourne, Australia.

Syrett P. (1996). Insects for biological control of broom (Cytisus scoparius) in New Zealand. Pp. 525-528 In: Proceedings of the 11th Australian Weeds Conference, Melbourne, Australia, 30 September - 3 October 1996, R. Shepherd (Ed.) Weed Science Society of Victoria Inc., Victoria, Australia.
A program to introduce insects for biological control of broom (Cytisus scoparius) in New Zealand began in 1981 and the progress in this programme is described.

Syrett P. and Emberson R.M. (1997). The natural host range of beetle species feeding on broom Cytisus scoparius (L.) Link (Fabaceae) in south-west Europe. Biocontrol Science and Technology 7: 309-326

Syrett P., Harman H.M. and Fowler S.V. (1995). Identification of risk to kowhai, a New Zealand native plant, Sophora microphylla Ait., from a potential biological control agent for broom, Cytisus scoparius (L.) Link. New Zealand Journal of Zoology 22: 305-309.