Search BIREA:

View:   short pages · print version

A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z · all top

References

Baars J.R. (2000). Emphasizing behavioural host-range: the key to resolving ambiguous host-specificity results on Lantana camara L. Proceedings of the X International Symposium on Biological Control of Weeds: 887-896
Candidate biological control agents presently under evaluation for release on L. camara in South Africa accept closely related native plant species. The results from host-range results of two natural enemies, Falconia intermedia (Hemiptera: Miridae) and Coelocephalapion sp. (Coleoptera: Brentidae) were compared to determine the influence these trials have on the interpretation of the accepted host-range. Results suggested that the natural host-range of a candidate biological control agent is best determined by focusing on behavioural factors influencing host acceptance. The implications of using trials that incorporate insect behaviour during host-specificity screening and risk analysis are discussed.

Babendreier D. and Bigler F. (2005). How to assess non-target effects of polyphagous biological control agents: Trichogramma brassicae as a case study. Pp. 603-610 In: Second International Symposium on Biological Control of Arthropods, Davos, Switzerland, 12-16 September, 2005, M.S. Hoddle (Ed.) United States Department of Agriculture, Forest Service, Washington.
The risk assessment conducted for Trichogramma brassicae (Hymenoptera: Trichogrammatidae), an egg parasitoid used for control of the European corn borer in European countries is discussed. The main factors investigated were the potential of establishment, acceptance and parasitism of non-target butterflies under laboratory, field-cage and field conditions, the searching efficiency in non-target habitats, the dispersal capacities and the potential for effects on other natural enemies in maize. Although high parasitism of non-target butterflies and other natural enemies were observed under laboratory conditions, very few eggs of non-target species were attacked in the field, possibly because of low host searching efficiency, and limited parasitoid dispersal. It was concluded that the possibility of using invertebrate agents with a broad host range in inundative biological control should not be excluded, although a thorough environmental risk assessment should be performed prior to release.

Babendreier D., Bigler F. and Kuhlmann U. (2005). Methods Used to Assess Non-target Effects of Invertebrate Biological Control Agents of Arthropod Pests. BioControl 50: 821-870.
An overview of methods currently applied in the study of non-target effects in biological control of arthropod pests. It provides the first step towards the ultimate goal of devising guidelines for the appropriate methods that should be universally applied for the assessment and minimisation of potential non-target effects. The topics reviewed include host specificity (including field surveys, selection of non-target test species and testing protocols), post-release studies, competition, overwintering and dispersal.

Babendreier D., Bigler F. and Kuhlmann U. (2006). Current status and constraints in the assessment of non-target effects. Pp. 1-13 In: Environmental impact of invertebrates for biological control of arthropods � methods and risk assessment, F. , F. Bigler, D. Babendreier and U. Kuhlmann (Ed.) CABI Publishing, Wallingford, UK

Babendreier D., Kuske S. and Bigler F. (2003). Parasitism of non-target butterflies by Trichogramma brassicae Bezdenko (Hymenoptera: Trichogrammatidae) under field cage and field conditions. Biological Control 26: 139-145.
The egg parasitoid Trichogramma brassicae has been inundatively released to control the European corn borer, Ostrinia nubilalis H�bner, in maize. Non-target parasitism of butterfly eggs by T. brassicae in field cages and under field conditions in Switzerland was investigated. Although the tested non-target butterflies were all attacked under semi-field and field conditions, it was concluded that effects on non-target butterflies due to mass released T. brassicae are minimal.

Babendreier D., Kuske S. and Bigler F. (2003). Non-target host acceptance and parasitism by Trichogramma brassicae Bezdenko (Hymenoptera: Trichogrammatidae) in the laboratory. Biological Control 26: 128-138.
Case study of host range testing Trichogramma brassicae Bezdenko using eggs of 23 non-target lepidopteran species including nine butterflies endangered in Switzerland to parasitoids under no-choice conditions in the laboratory. The results show that T. brassicae parasitizes a number of non-target lepidopteran eggs belonging to different families.

Bailey, K.L., Pitt, W.M., Falk, S. and Derby, J. (2011). The effects of Phoma macrostoma on nontarget plant and target weed species. Biological Control 58: 379-386

Balciunas J.K. (2004). Are mono-specific agents necessarily safe? The need for pre-release assessment of probable impact of candidate biocontrol agents, with some examples. Proceedings of the XI International Symposium on Biological Control of Weeds: 252-257
Biosafety is now often considered more important than efficacy. However, even a highly specific agent can have unpredictable adverse impacts especially if it becomes abundant on the target, but fails to reduce target weed populations. However, pre-release consideration of the proposed agent's probable efficacy is receiving increased attention. This is usually done overseas, in the native range of both the target weed and candidate agent and approaches used are reviewed. Pre-release impact assessments can also be performed in quarantine. The results of two "dosage" trials conducted with a gall-making fly that is being considered as a biological control agent for Cape ivy (Delairea odorata) are described. Plants exposed to both low and high densities of gall flies, were smaller, and had fewer leaves than the ungalled controls. Pre-release evaluations of a candidate agent's potential impact should lead to fewer ineffective agents being released, thereby making weed biocontrol more efficient, and reducing the possibility of negative indirect impacts on non-targets.

Balciunas J.K. and Villegas B. (2007). Laboratory and realized host ranges of Chaetorellia succinea (Diptera : Tephritidae), an unintentionally introduced natural enemy of yellow starthistle. Environmental Entomology 36: 849-857
In 1999, Chaetorellia succinea (Costa) (Diptera: Tephritidae), an unintentional introduction from Greece, was considered for biocontrol of yellow starthistle, Centaurea solstitialis L., one of the worst weeds in the western United States. However, the host range of C. succinea had not been studied, and so the physiological host range was determined in the laboratory by exposing it under no-choice conditions to 14 potential Cardueae hosts. Two introduced weed species and the native American basketflower (Centaurea americana Nuttall) were found to be laboratory hosts, although yellow starthistle was highly preferred. Because Ch. succinea is already widespread throughout California, flower heads were collected from 24 potential host plant species in the field to determine the realized host range. Ch. succinea emerged only from the other two known hosts: Ce. melitensis and Ce. sulfurea. Our results suggest that American basketflower growing in the southwestern United States may also be at risk if Ch. succinea expands its range into that region.

Balciunas J.K., Burrows D.W. and Purcell M.F. (1996). Comparison of the physiological and realized host-ranges of a biological control agent from Australia for the control of the aquatic weed, Hydrilla verticillata. Biological Control 7: 148-158.

Bale, J. (2011). Harmonization of regulations for invertebrate biocontrol agents in Europe: progress, problems and solutions. Journal of Applied Entomology 135: 503�513.
This article reviews major developments in the regulation and environmental risk assessment of insect biocontrol agents in Europe over the last 10 years including: the fragmented pattern of regulation between countries, variation in information requirements for release licences, format and methods of environmental risk assessment for different taxonomic groups, use and updating of the European Plant Protection Organisation Positive List, sources of expert advice, communication between regulators, and options for the provision of international leadership to coordinate regulatory issues with biocontrol in Europe.

Bangsund D.A., Leistritz F.L. and Leitch J.A. (1999). Assessing economic impacts of biological control of weeds: the case of leafy spurge in the northern Great Plains of the United States. Journal of Environmental Management. 1999. 56: 1, 35-43 56: 35-43.

Barbosa P. (1998). Conservation biological control. Academic Press, London.

Barlow N.D. (1999). Models in biological control: a field guide Pp. 43-70 In: Theoretical approaches to biological control, B.A. Hawkins and H.V. Cornell (Ed.) Cambridge University Press UK.
This paper reviews a number of examples of models for biological control programmes, but notes that the same principles can be applied to non-target as wellas target species.

Barlow N.D. and Goldson S.L. (1993). A modelling analysis of the successful biological control of Sitona discoideus (Coleoptera: Curculionidae) by Microctonus aethiopoides (Hymenoptera: Braconidae) in New Zealand. Journal of Applied Ecology 30: 165-179

Barlow N.D., Barratt B.I.P., Ferguson C.M. and Barron M.C. (2004). Using models to estimate parasitoid impacts on non-target host abundance. Environmental Entomology 33: 941-948.
A method is described for estimating the impact of a parasitoid on the abundance of a nontarget host, using the intrinsic rate of host increase, the average abundance of the host in the presence of parasitism, and the estimated mortality caused by the parasitoid. The method is applied to the braconid Microctonus aethiopoides Loan, which is known to attack native weevils. The non-target host population was modelled using discrete Ricker or continuous logistic models, tuning the models to host population data in the presence of parasitism, then removing parasitism and determining the increase in predicted equilibrium host density. In an area where up to 30% parasitism of a nontarget host population has been recorded, the model estimated an 8% reduction of the nontarget host, but in another area, where the parasitoid has not established, the method was applied in reverse to predict the parasitoid's impact if it did establish. In this case, the model predicted a 30% suppression of population density, the host's intrinsic rate of increase, rm, accounting for this difference in predicted impact.

Barlow N.D., Goldson S.L. and McNeill M.R. (1994). A prospective model for the phenology of Microctonus hyperodae (Hymenoptera: Braconidae), a potential biological control agent of Argentine stem weevil in New Zealand. Biocontrol Science and Technology 4: 375-386.

Barlow N.D., Kean J.M. and Goldson S.L. (2002). Biological control lessons from modeling of New Zealand successes and failures. Proceedings of the First International Symposium on Biological Control of Arthropods: 105-107.

Barratt B.I.P. (1996). Biological control: Is it environmentally safe? Forest and Bird 282: 36-41.

Barratt B.I.P. (2002). Risks of Biological Control. Pp. 720-722 In: Encyclopaedia of Pest Management, D. Pimental (Ed.) Marcel Dekker Inc, New York.

Barratt B.I.P. (2004). Microctonus parasitoids and New Zealand weevils: comparing laboratory estimates of host ranges to realized host ranges. Pp. 103-120 In: Assessing host ranges for parasitoids and predators used for classical biological control: A guide to best practice, R.G. Van Driesche and R. Reardon (Ed.) USDA Forest Service, Morgantown, West Virginia.

Barratt B.I.P. and Johnstone P.D. (2001). Factors affecting parasitism by Microctonus aethiopoides Loan (Hymenoptera: Braconidae) and parasitoid development in natural and novel host species. Bulletin of Entomological Research 91: 245-253.
A laboratory study of aspects of parasitoid host acceptance, suitability and physiological regulation in natural and novel host species was carried out to investigate the degree of variability encountered with different hosts and to determine the value of such observations in host range determination. The study uses Microctonus aethiopoides Loan as a model braconid parasitoid. It was concluded that laboratory observations can provide useful information on the compatibility between host and parasitoid which can complement traditional host range tests to predict field host range.

Barratt B.I.P. and Kuhlmann U. (2005). Introduction: legislation and biological control of arthropods: challenges and opportunities. Pp. 683-685 In: Second International Symposium of Biological Control of Arthropods, M. Hoddle (Ed.) USDA Forest Service FHTET-2005-08.

Barratt B.I.P. and Moeed A. (2005). Environmental safety of biological control: policy and practice in New Zealand. Biological Control 35: 247-252.
The regulatory system for biological control agent introduction in NZ and the process by which biological control applications are received and processed is described. Two case studies of weed biological control agents which have been through the HSNO process, and the scientific issues that arose in considering the environmental safety of these agents are discussed.

Barratt B.I.P., Blossey B. and Hokkanen H.M.T. (2006). Post-release evaluation of non-target effects of biological control agents. Pp. 166-186 In: Environmental Impact of Arthropod Biological Control: Methods and Risk Assessment, U. Kuhlmann, F. Bigler and D. Babendreier (Ed.) CABI Bioscience, Delemont, Switzerland.
This paper deals with weed biological control agents, pathogens and parasitoids.

Barratt B.I.P., Evans A.A. and Ferguson C.M., (1997). Potential for control of Sitona lepidus Gyllenhal by Microctonus spp. New Zealand Plant Protection 50: 37-40

Barratt B.I.P., Evans A.A. and Johnstone P.D. (1996). Effect of the ratios of Listronotus bonariensis and Sitona discoideus (Coleoptera: Curculionidae) to their respective parasitoids Microctonus hyperodae and Microctonus aethiopoides (Hymenoptera: Braconidae), on parasitism, host oviposition and feeding in the laboratory. Bulletin of Entomological Research 86: 101-108.
Laboratory experiments were carried out to investigate the effect of host-parasitoid ratio, and exposure time on host survival, parasitism, oviposition and feeding. Over the ranges studied, increasing parasite number, and to a greater extent, period of exposure of parasitoids to their hosts increased parasitism levels. Effects of parasitoid exposure on host fecundity and feeding was assessed.

Barratt B.I.P., Evans A.A., Ferguson C.M., Barker G.M., McNeill M.R. and Phillips C.B. (1997). Laboratory nontarget host range of the introduced parasitoids Microctonus aethiopoides and Microctonus hyperodae (Hymenoptera: Braconidae) compared with field parasitism in New Zealand. Environmental Entomology 26: 694-702.
Laboratory host specificity of Microctonus aethiopoides Loan and Microctonus hyperodae Loan, braconids already imported to control weevil pests, was compared with actual field parasitism. NZ native, introduced, and beneficial species were tested. M. aethiopoides oviposited in 11 of the 12 species to which it was exposed and successfully parasitized 9 species. M. hyperodae oviposited in 5 of the 11 species to which it was exposed and developed successfully in 4 species. Higher percentage parasitism was recorded with M. aethiopoides than with M. hyperodae. Field collections of weevils indicated that 10 New Zealand native species and 3 other nontarget species, including the weed biological control agent Rhinocyllus conicus (Froehlich), were parasitized by M. aethiopoides. M. hyperodae has been found parasitizing only native species. Field parasitism levels in the field of >70% have been recorded for M. aethiopoides and <5% for M. hyperodae. The results of this study suggest that laboratory host range testing is indicative of nontarget parasitism in the field.

Barratt B.I.P., Evans A.A., Ferguson C.M., McNeill M.R. and Addison P. (2000). Phenology of native weevils (Coleoptera: Curculionidae) in New Zealand pastures and parasitism by the introduced braconid, Microctonus aethiopoides Loan (Hymenoptera: Braconidae). New Zealand Journal of Zoology 27: 93-110.
The phenology of native weevils pasture sites in Otago, Canterbury and Waikato was studied by monthly sampling to record reproductive status and incidence of parasitism by introduced braconid parasitoids in the genus Microctonus. Most parasitism occurred after the main reproductive period of entimine weevils in spring, but a putative second generation in some species might be more affected by parasitoid attack. A native rhytirhinine species, Steriphus variabilis, differed from the entimines because adults emerged in autumn and spring, and may be bivoltine.

Barratt B.I.P., Evans A.A., Ferguson C.M., McNeill M.R., Proffitt J.R. and Barker G.M. (1998). Curculionoidea (Insecta: Coleoptera) of agricultural grassland and lucerne as potential non-target hosts of the parasitoids Microctonus aethiopoides Loan and Microctonus hyperodae Loan (Hymenoptera: Braconidae). New Zealand Journal of Zoology 25: 47-63.
The paper describes a survey of the weevil fauna of pasture, lucerne and modified native grassland in parts of the southern South Island, Canterbury and the northern North Island of New Zealand, where the parasitoids Microctonus spp. are present to identify weevils with taxonomic and ecological affinities with the target hosts, and hence, potential non-target hosts.

Barratt B.I.P., Evans A.A., Stoltz D.B., Vinson S.B. and Easingwood R. (1999). Virus-like particles in the ovaries of Microctonus aethiopoides Loan (Hymenoptera: Braconidae), a parasitoid of adult weevils (Coleoptera: Curculionidae). Journal of Invertebrate Pathology 73: 182-188.

Barratt B.I.P., Ferguson C.M. and Evans A.A. (2001). Non-target effects of introduced biological control agents and some implications for New Zealand. Pp. 41-53 In: Balancing Nature: Assessing the Impact of Importing Non-Native Biological Control Agents (An International Perspective), J.A. Lockwood, F.G. Howarth and M.F. Purcell (Ed.) Thomas Say Publications, Maryland.

Barratt B.I.P., Ferguson C.M., Bixley A.S., Crook K.E., Barton D.M. and Johnstone P.D. (2007). Field parasitism of nontarget weevil species (Coleoptera : Curculionidae) by the introduced biological control agent Microctonus aethiopoides Loan (Hymenoptera : Braconidae) over an altitude gradient. Environmental Entomology 36: 826-839
The parasitoid, Microctonus aethiopoides Loan (Hymenoptera: Braconidae) was introduced into New Zealand in 1982 to control the alfalfa pest, Sitona discoideus Gyllenhal (Coleoptera: Curculionidae). Studies have shown that a number of nontarget weevil species are attacked in the field by this parasitoid. A field study was carried out over 6 years to investigate nontarget parasitism by M. aethiopoides over an altitudinal sequence from the target host habitat (alfalfa) into native grassland. Weevil densities were estimated, species identified, and dissections carried out to determine reproductive status and parasitism. Seven nontarget weevil species were found to be parasitized. Substantial nontarget parasitism was found at only one of the three locations, with up to 24% parasitism of a native weevil, Nicaeana fraudator Broun (Coleoptera: Curculionidae), recorded. Results are discussed in relation to weevil phenology.

Barratt B.I.P., Ferguson C.M., McNeill M.R. and Goldson S.L. (1999). Parasitoid host specificity testing to predict host range. Pp. 70-83 In: Host specificity testing in Australasia: towards improved assays for biological control, T.M. Withers, L. Barton-Browne and J.N. Stanley (Ed.) CRC for Tropical Pest Management, Brisbane, Australia.

Barratt B.I.P., Goldson S.L., Ferguson C.M., Phillips C.B. and Hannah D.J. (2000). Predicting the risk from biological control agent introductions: A New Zealand approach. Pp. 59-75 In: Nontarget effects of biological control introductions, P.A. Follett and J.J. Duan (Ed.) Kluwer Academic Publishers, Norwell, Massachusetts, USA.

Barratt B.I.P., Howarth F., Withers T.M., Kean J.M. and Ridley G. (2010). Progress in risk assessment for classical biological control. Biological Control 52: (3) 245-254.
Controversy in the 1980s about the biosafety of biological control created tension between biological control practitioners and those concerned about non-target impacts. Research has addressed a number of questions which have subsequently led to a greater understanding of risk assessment and biosafety. Advances in quarantine host range testing have improved our ability to predict post-release impacts; pre- and post-release studies are increasingly involving population models to estimate the population impact of introduced biological control agents; regulators have access to accumulating data from past introductions to validate earlier decisions. Progress in research and regulation of biological control are discussed with particular reference to Australasia.

Barratt B.I.P., Murney R., Easingwood R., Ward V.K. (2006). Virus-like particles in the ovaries of Microctonus aethiopoides Loan (Hymenoptera: Braconidae): comparison of biotypes from Morocco and Europe. Journal of Invertebrate Pathology 91: 13-18.
Virus-like particles (MaVLP) have been discovered in the ovarial epithelial cells of the solitary, koinobiont, endoparasitoid, Microctonus aethiopoides Loan (Hymenoptera: Braconidae) introduced to New Zealand originally from Morocco to control the lucerne pest Sitona discoideus Gyllenhal (Coleoptera: Curculionidae). MaVLP have been found in all females examined. It has been suggested, although not demonstrated, that like many other such VLP found in parasitoids, MaVLP might play a role in host immunosuppression. Since another biotype of M. aethiopoides from Ireland has been proposed for introduction to control the white clover pest, Sitona lepidus Gyllenhal, in New Zealand, it was considered that females from this biotype warranted transmission electron microscope examination for VLP. No VLP were observed in ovarian tissues of specimens collected from three diVerent locations in Ireland. Similarly, none were found in M. aethiopoides sourced from France, Wales, and Norway. These observations are discussed in relation to quarantine host speciWcity tests with the Irish biotype, which found that the host range of the Irish biotype is likely to be less extensive than that of the Moroccan biotype already in New Zealand.

Barratt B.I.P., Oberprieler R.G., Ferguson C.M. and Hardwick S. (2005). Parasitism of the lucerne pest Sitona discoideus Gyllenhal (Coleoptera: Curculionidae) and non-target weevils by Microctonus aethiopoides Loan (Hymenoptera: Braconidae) in south-eastern Australia, with an assessment of the taxonomic affinities of non-target hosts of M. aethiopoides recorded from Australia and New Zealand. Australian Journal of Entomology 44: 192-200.
A survey of weevils found in and near lucerne in south-eastern Australia was carried out to investigate whether similar non-target parasitism was occurring in Australia as in NZ. A single incidence of parasitism of a species of an Australian native weevil Prosayleus sp. by M. aethiopoides was recorded. No parasitism of any other weevil species was observed. The taxonomic affinities between Sitona and native Australian and New Zealand weevils are discussed, concluding that non-target host range in M. aethiopoides may be determined more by ecological factors than by taxonomic affinities among its hosts.

Barratt B.I.P., Phillips C.B., Ferguson C.M. and Goldson S.L. (2002). Predicting non-target impacts of parasitoids: where to from here? Pp. 378-386 In: Proceedings of First International Symposium on Biological Control of Arthropods, R. Van Driesche (Ed.) Forest Health Technology Enterprise Team, Morgantown, West Virginia.

Barratt B.I.P., Todd J. and Malone L.A. (2016). Selecting non-target species for arthropod biological control agent host range testing: evaluation of a novel method. Biological Control 93: 84-92.

Barratt B.I.P., Todd J.H., Ferguson C.M., Crook K., Burgess E.P.J., Barraclough E.I. and Malone L.A. (2013). Biosafety testing of genetically modified ryegrass (Lolium perenne L.) plants using a model for the optimum selection of test invertebrates. Environmental Entomology 42: 820-830

Barratt BIP, Oberprieler RG, Barton D, Mouna M, Stevens M, Alonso-Zarazaga MA, Vink CJ and Ferguson CM. (2012). Could research in the native range, and non-target host range in Australia, have helped predict host range of the parasitoid Microctonus aethiopoides Loan (Hymenoptera: Braconidae), a biological control agent introduced for Sitona discoideus Gyllenhal (Coleoptera: Curculionidae) in New Zealand? Biocontrol 57: 735-750.

Barratt, B.I.P. (2011). Assessing safety of biological control introductions. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 6 1-12
A review summarising the biosafety debate, and characterising the direct and indirect risks of biological control mainly for weeds and insect pests.

Barron M.C. (2007). Retrospective modelling indicates minimal impact of non-target parasitism by Pteromalus puparum on red admiral butterfly (Bassaris gonerilla) abundance. Biological Control 41: 53-63
There is anecdotal evidence that populations of the New Zealand endemic red admiral butterfly Bassaris gonerilla (F.) have declined since the early 1900s as a result of the introduction of the generalist pupal parasitoids Pteromalus puparum (L.) and Echthromorpha intricatoria (F.). A discrete-time model for B. gonerilla population dynamics was constructed which suggested that the impact of non-target parasitism by P. puparum has been minimal, but that parasitism by E. intricatoria was estimated to have caused 30% suppression of B. gonerilla abundance. The model suggested that the presence of an overwintering larval generation of B. gonerilla provides a temporal refuge from the high levels of E. intricatoria parasitism, assuming that parasitism rates are independent of B. gonerilla density. This assumption appears valid for P. puparum parasitism, but may not be so for E. intricatoria.

Barron M.C., Barlow N.D. and Wratten S.D. (2003). Non-target parasitism of the endemic New Zealand red admiral butterfly (Bassaris gonerilla) by the introduced biological control agent Pteromalus puparum. Biological Control 27: 329-335.
The New Zealand red admiral butterfly has long been recognised as a non-target host for the introduced biological control agent Pteromalus puparum but its impact has never been quantified. Data were collected to construct a partial life table for B. gonerilla. Egg parasitism by an unidentified Telenomus (scelionid) was 95%. P. puparum parasitized 14% of B. gonerilla pupae sampled. However, pupal parasitism by the self-introduced Echthromorpha intricatoria (F.) (Hymenoptera: Ichneumonidae), was higher at 26%. It is concluded that P. puparum has permanently enhanced mortality in B. gonerilla, but the level of mortality is low relative to egg parasitism by Telenomus sp. and pupal mortality due to E. intricatoria parasitism.

Barton J.E. (2004). How good are we at predicting the field host-range of fungal pathogens used for classical biological control of weeds? Biological control in agricultural IPM systems 31: 99-122

Barton J.E., Fowler S.V., Gianotti A.F., Winks C.J., de Beurs M., Arnold G.C. and Forrester G. (2007). Successful biological control of mist flower (Ageratina riparia) in New Zealand: Agent establishment, impact and benefits to the native flora. Biological Control 40: 370-385

Barton, J. (2012). Predictability of pathogen host range in classical biological control of weeds: an update. Biocontrol 57: 289-305
The author reports that to-date 28 species of fungi have been released as classical biological control agents against weeds world-wide. These pathogens have been reported infecting only six non-target plant species outdoors and all of these incidents were predicted. More non-target plant species developed disease symptoms in glasshouse tests than in the field.

Barton-Browne L. (1995). Ontogenetic changes in feeding behavior. Pp. 307-342 In: Regulatory Mechanisms in Insect Feeding, R.F. Chapman and G. de Boer (Ed.) Chapman and Hall.

Barton-Browne L. and Withers T.M. (2002). Time-dependent changes in the host-acceptance threshold of insects: implications for host specificity testing of candidate biological control agents. Biocontrol Science and Technology 12: 677-693.

Beard J.J. and Walter G.H. (2001). Host plant specificity in several species of generalist mite predators. Ecological Entomology 26: 562-570

Beckage N.E. and Gelman D.B. (2004). Wasp parasitoid disruption of host development: Implications for new biologically based strategies for insect control. Annual Review of Entomology 49: 299-330

Beirne B.P. (1975). Biological control attempts by introductions against pest insects in the field in Canada. The Canadian Entomologist 107: 225-236.

Bellows T.S. and Fisher T.W. (1999). Handbook of Biological Control: Principles and Applications of Biological Control. Academic Press, San Diego.

Benson J., Pasquale A., Van Driesche R. and Elkinton J.S. (2003). Assessment of risk posed by introduced braconid wasps to Pieris virginiensis, a native woodland butterfly in New England. Biological Control 26: 83-93

Berenbaum M.R. and Zangerl A.R. (1992). Genetics of physiological and behavioral resistance to host furanocoumarins in the parsnip webworm. Evolution 46: 1373-1384.

Berg G., Grosch R. and Scherwinski K. (2007). Risk assessment for microbial antagonists: are there effects on non-target organisms? Gesunde Pflanzen 59: 107-117
Biological control of phytopathogenic fungi using antagonistic microorganisms is potentially environmentally friendly but possible non-target effects on ecologically important soil-microbes need to be considered. Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 were applied to control the pathogen Verticillium dahliae on strawberry and potato, and the bacterial strains Pseudomonas trivialis 3Re2-7, P. fluorescens L13-6-12, S. plymuthica 3Re4-18 and the fungal antagonists Trichoderma reesei G1/8 and T. viride G3/2 were introduced to control Rhizoctonia solani on lettuce and potato. After BCA treatment we did not observe any long-term effect on the plant-associated microbes in any tested pathosystem. Therefore, no sustainable risks could be seen for the indigenous micro-organisms.

Berndt L., Withers T.M., Mansfield S. and Hoare R.J.B. (2009). Non-target species selection for host range testing of Cotesia urabae. New Zealand Plant Protection 62: 168-173
The Australian solitary larval endoparasitoid Cotesia urabae (Hymenoptera: Braconidae) is a promising biocontrol agent for Uraba lugens. A non-target species list was compiled for host range testing. The endemic species Celama parvitis is the sole New Zealand representative of the Nolinae and was highest priority. The next most closely related subfamily is the Arctiinae, in which New Zealand has four endemic species (Metacrias huttoni, M. erichrysa, M. strategica and Nyctemera annulata) and one introduced biological control agent (Tyria jacobaeae). The merits of including other Lepidoptera are discussed.

Berndt L.A., Mansfield S. and Withers T.M. (2007). A method for host range testing of a biological control agent for Uraba lugens. New Zealand Plant Protection 60: 286-290.
Uraba lugens (gum leaf skeletoniser) is a serious pest of Eucalyptus spp. in Australia and is now well established in the greater Auckland region of New Zealand. Two parasitoid species are under consideration as potential biological control agents and this paper describes host range testing methods developed using one of these species (Cotesia urabae) against two non-target species, Helicoverpa armigera and Spodoptera litura. Using sequential no-choice tests clear preferences were observed for U. lugens over both non-target test species. Although some females did attempt to attack the non-target species, no evidence of parasitism was observed when reared or dissected. This method elucidated both behavioural responses and physiological development of C. urabae, and it is proposed to be a suitable host range testing method for full evaluation of this species.

Berner D.K. (2010). BLUP, a new paradigm in host-range determination. Biological Control 53: 143-152
There has been increased focus on modernizing the approach from centrifugal phylogenetic testing to basing selection of test plants on molecular phylogeny rather than taxonomic classification. Mixed model equations (MME) and best linear unbiased predictors (BLUPs) have been used to determine the probable host-range of plant pathogens proposed for biological control of Russian thistle. The work focuses on evaluating disease severity on related plant species although the author describes how MME can be used with any biological weed control agent or target as long as the evaluation criterion is quantitative and variances and molecular genetic relationships among test species can be obtained. The author's objectives are to familiarize biological control researchers and regulators with some of the requirements and advantages of the MME and the use of the MME to construct test plant lists.

Berner D.K., Bruckart W.L., Cavin C.A., Michael J.L., Carter M.L. and Luster D.G. (2009). Best linear unbiased prediction of host-range of the facultative parasite Colletotrichum gloeosporioides f. sp salsolae, a potential biological control agent of Russian thistle. Biological Control 51(1): 158-168.
Russian thistle or tumbleweed (Salsola tragus L.) is an introduced, widely distributed invasive weed in N. America. The fungus Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. in Penz. f. sp. salsolae (CGS) is a facultative parasite being considered for classical biological control of this weed. Host-range tests were conducted with 92 accessions from 19 families of plants including 62 genera and 120 species. Disease reaction data were combined with a relationship matrix derived from internal transcribed spacer DNA sequences and analyzed with mixed model equations to produce Best Linear Unbiased Predictors (BLUPs) for each species. Twenty-nine species (30 accessions) from seven closely-related Chenopodiaceae tribes had significant levels of disease severity as indicated by BLUPs, compared to six species determined to be susceptible with least squares means estimates. Of the 29 susceptible species, 10 native or commercially important species in N. America were identified as needing additional tests to determine the extent of any damage caused by infection.

Bigler F., Babendreier D. and Kuhlmann U. (2006). Environmental impact of arthropod biological control: methods and risk assessment. Pp. 288. CABI Publishing, Delemont, Switzerland.

Bigler, F., Babendreier, D. and van Lenteren, J.C. (2010). Risk Assessment and non-target effects of egg parasitoids in biological control. Pp. 413-442 In: Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma, F. L. Consoli, J. R. P. Parra and R. A. Zucchi (Eds.) Springer, Dortrecht, Netherlands.

Blossey B. (1995). Host specificity screening of insect biological control agents as part of an environmental risk assessment. Pp. 84-89 In: Biological Control: Benefits and Risks, H.M.T. Hokkanen and J.M. Lynch (Ed.) Cambridge University Press, Cambridge, UK.

Blossey B. (1999). Before, during and after: the need for long-term monitoring in invasive plant species management. Biological Invasions 1: 301-311.

Blossey B. and Skinner L. (2000). Design and importance of post-release monitoring. Pp. 693-706 In: Proceedings of the X International Symposium on Biological Control of Weeds, N.R. Spencer (Ed.)

Boettner G.H., Elkinton J.S. and Boettner C.J. (2000). Effects of a biological control introduction on three nontarget native species of saturniid moths. Conservation Biology 14: 1798-1806.
The nontarget effects of a generalist parasitoid fly, Compsilura concinnata (Diptera: Tachinidae), that has been introduced as a biological control agent against 13 pest species were examined. Results suggested that reported declines of silk moth populations in New England may have been caused by C. concinnata.

Bourchier R.S. and McCarty L.S. (1995). Risk assessment of biological control (predators and parasitoids). Bulletin of the Entomological Society of Canada 27: 15.

Boyd E.A. and Hoddle M.S. (2007). Host specificity testing of Gonatocerus spp. egg-parasitoids used in a classical biological control program against Homalodisca vitripennis: a retrospective analysis for non-target impacts in southern California. Biological Control 43: 56-70
A host specificity testing protocol was developed for estimating potential physiological and ecological risk to non-target species posed by species of the egg parasitoids Gonatocerus spp. using choice and no-choice host options. The solitary Gonatocerus ashmeadi Girault and gregarious G. fasciatus Girault (Hymenoptera: Mymaridae) are non-native egg-parasitoids of the exotic Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), and were introduced for classical biological control California, USA. The parasitoids' physiological and ecological host ranges were estimated on three non-target indigenous sharpshooters and results were compared with observed non-target impacts in the field. Laboratory tests with G. ashmeadi revealed Homalodisca liturata Ball (Hemiptera: Cicadellidae) eggs were a physiologically and ecologically acceptable host; Graphocephala atropunctata (Signoret) and Draeculacephala minerva Ball (Hemiptera: Cicadellidae) eggs were not acceptable hosts. Tests with G. fasciatus showed both H. liturata and D. minerva, but not G. atropunctata eggs, were physiologically acceptable hosts. Only H. liturata eggs were determined to be an ecologically acceptable host for G. fasciatus. Field surveys failed to find parasitism of G. atropunctata or D. minerva eggs by either G. ashmeadi or G. fasciatus.

Briese D.T. (1999). Open field host-specificity tests: is "natural" good enough for risk assessment? Pp. 44-59 In: Host specificity testing in Australasia: towards improved assays for biological control, T.M. Withers, L. Barton-Browne and J. Stanley (Ed.) Scientific Publishing, Department of Natural Resources, Brisbane.

Briese D.T. (2003). The centrifugal phylogenetic method used to select plants for host-specificity testing of weed biological control agents: Can and should it be modernised? In: Improving the selection, testing and evaluation of weed biocontrol agents, H. S. Jacob and D. T. Briese (Ed.) CRC for Australian Weed Management Technical Series no. 7, Adelaide, Australia

Briese D.T. (2006). Can an a priori strategy be developed for biological control? The case for Onopordum spp. thistles in Australia. Australian Journal of Entomology 45: 317-323

Briese D.T. and Walker A. (2008). Choosing the right plants to test: The host-specificity of Longitarsus sp (Coleoptera : Chrysomelidae) a potential biological control agent of Heliotropium amplexicaule. Biological Control 44: 271-285
Using the case of the root-feeding flea beetle, Longitarsus sp., a candidate agent for biological control of Heliotropium amplexicaule in Australia, this paper describes a new protocol, based on phylogeny, and refined by ecological and biogeographic similarities. Taxonomic nomenclature is de-emphasized in favour of strict phylogenetic relationships and the use of so-called "safeguard species" is abandoned. The testing showed that adult feeding extended to plant species with up to five degrees of phylogenetic separation from H. amplexicaule, indicating that there would be a moderate risk that more distantly related plants suffer some feeding damage by adult Longitarsus sp. when they co-occur with infestations of the target weed that have large flea-beetle populations. Longitarsus sp. was able to complete its life-cycle on plants related to the target weed by two degrees of phylogenetic separation or less, leaving indigenous Heliotropium and Tournefortia species at some risk of colonisation. While these species had different life-histories and/or only slightly overlapped with the actual and potential range of the target weed, a minority of reviewers were concerned that insufficient information was available on the dispersal abilities of Longitarsus sp. to dismiss this risk. Release was therefore not approved, although this was not unexpected, as the assessment was based on factors that modified the effects of host range alone. The new protocols highlighted problems of an overreliance on taxonomic nomenclature as opposed to actual genetic relationships. However, they also directed attention to knowledge gaps in biogeography and agent biology that might refine the assessed risk.

Brodeur J. (2012). Host specificity in biological control: insights from opportunistic pathogens. Evolutionary Applications 5: 470-480.

Buckley Y.M., Rees M. and Paynter Q. (2004). Modelling integrated weed management of an invasive shrub in tropical Australia. Journal of Applied Ecology 41: 547-560

Butt T.M., Jackson C. and Magan N. (2002). Fungi as Biological Control Agents: Progress, Problems and Potential. CABI Publishing, Wallingford, U.K. 390 pp.

Byers R.A. and Kendall W.A. (1982). Effects of plant genotypes and root nodulation on growth and survival of Sitona spp. larvae. Environmental Entomology 11: 440-443.

top